Mechanical loss of crystalline and amorphous coatings

I. Martin¹, K. Craig¹, P. Murray¹, R. Robie¹, S. Reid², A. Cumming¹, R. Bassiri³, M. M. Fejer³, J. Harris³, M. Hart¹, G. Harry⁴, K. Haughian¹, D. Heinert⁶, J. Hough¹, A. Lin³, I. MacLaren¹, R. Nawrodt⁶, S. Penn⁵, R. Route³, S. Rowan¹

¹SUPA, University of Glasgow
²SUPA, University of the West of Scotland
³Stanford University
⁴American University
⁵Hobart and William Smith College
⁶University of Jena

GWADW, Takayama, May 2014
Outline

- Introduction

- Measurements of crystalline coatings
 - AlGaAs on silica and silicon
 - AlGaP

- Measurements of amorphous coatings
 - TiO$_2$ / Ta$_2$O$_5$ coatings
 - SiO$_2$ doped-HfO$_2$
Coating thermal noise

- Reductions in coating thermal noise required for planned future detectors e.g.
 - Enhancements to Advanced LIGO
 - May operate at cryogenic temperature or room temperature (or both – cryo-xylophone)
 - May operate around 1550 nm
 - 3rd generation detectors e.g. ET (LF)
 - Cryogenics (10 or 20 K)
 - Change of wavelength to 1550 nm

\[
S_x(f, T) \approx \frac{2k_BT}{\pi^2f} \frac{d}{w^2} Y \phi\left(\frac{Y'}{Y} + \frac{Y}{Y'}\right)
\]
Current coatings – silica/tantala

- Cryogenic loss peaks in tantala / silica films (single layers1,2 and aLIGO coating3) suggest reduction in coating thermal noise by \(\sim 2x\) by cooling to 20K
 - ET-LF requires loss reduction by \(\sim 4x\) (20 K operation) or \(\sim 1.6x\) (10 K operation)
 - Peaks at higher temperature (\(\sim 30 K\)) in multilayer coatings (aLIGO & \(\text{SiO}_2/\text{Ta}_2\text{O}_5\) on sapphire measured at ICRR4).

1Martin et al, CQG (2014), 2Martin et al, CQG (2010), 3Granta et al, Opt. Lett. 38 (2013), 4E. Hirose et al, in preparation
Paths to improved coating TN performance

- Improved amorphous coatings:
 - Beginning to understand causes of dissipation
 - Further improvements to current coatings?
 - Alternative materials?

- Crystalline coatings:
 - Intrinsic loss of AlGAs shown to be very low (G. Cole)
 - Measurements of low Brownian noise after being transferred to new substrate.
 - Can they be used successfully on silicon at low temperature?
 - GaP/AlGaP alternative - lattice matched to silicon, also very low loss - possible alternative?

- Different solutions may be required for different operating temperatures / wavelengths / mirror substrates – studies ongoing
AlGaAs loss measurements

- **AlGaAs micro-resonators** - very low mechanical loss (2.5E-5 at room temperature, 4.5 × 10⁻⁶ at 10 K¹)

- Grown on GaAs, transferred to required mirror substrate
 - Optical cavity measurement – loss of ~4E-5 at room temperature²
 - Small laser beam will not probe loss of entire bonded coating with equal sensitivity
 - More measurements at frequencies closer to GWD band

- **AlGaAs samples**
 - 81 alternating layers of GaAs and Al₀.₉₂Ga₀.₀₈As
 - Thickness 6.83 μm, HR at 1064 nm
 - Diameter 16.4 mm

- **Bonded to disk substrates by G. Cole**
 - SiO₂ substrate – 1.8mm thick x 3” diameter
 - Si substrate – 465 μm thick x 1.54” diameter

Previous measurements by Steve Penn and Gregg Harry suggested coating loss of 2.1E-4.

A second sample had visible features between coating and substrate – areas of poor adhesion? Areas changed over time.

Our sample – appears much better, although some possible defects still visible.
AlGaAs loss measurements

- Disks suspended in a nodal support
- Vibrational modes excited electrostatically, loss from amplitude ring-down

\[\phi_{\text{coating}} = \frac{E_{\text{substrate}}}{E_{\text{coating}}} (\phi_{\text{coated}} - \phi_{\text{un-coated}}) \]

- Energy ratio calculated using FE modelling
AlGaAs on SiO$_2$

- Room temperature loss measurements of silica disk before and after application of AlGaAs coating

![Graph showing loss vs. frequency]
AlGaAs on SiO$_2$ – preliminary results

- Calculated coating loss varies significantly for different vibrational modes
- Two modes give losses 3.8E-5 and 6.1E-5 – comparable with (2.5-4)E-5 (Cole 2013)
Why is there so much variation in coating loss?

- Possible energy loss to suspension wires – re-suspend and repeat
- Relative energy stored in coating varies significantly with mode shape. Sensitivity to coating loss varies with mode.
- Coating thermoelastic effects? Further modelling required.
Delamination observed around edges after 2 cooling cycles to \(~14\) K (period of \(~48\) hrs)

- Garret Cole carried out cooling tests on smaller sample, which survived. Methods of strengthening the bond under investigation
GaP/AlGaP coatings

- Alternative crystalline coating system - GaP/AlGaP
- Lattice matched to Si – grown epitaxially on Si substrates (A. Lin et al, Stanford)
- Measurements of
 - (a) 10 GaP/AlGaP bi-layer stack on Si disk
 - (b) 1 μm thick layer of GaP on Si cantilever

\[\text{Coating Loss} \]

\[\text{Temperature (K)} \]

\[1 \text{A. Cumming et al, submitted} \]
Crystalline coatings

- **AlGaAS**
 - On silica, 290 K – lowest coating loss 3.6×10^{-5}
 - On silicon – coating detaching after two temperature cycles

- **AlGaP**
 - First coating, loss $<4 \times 10^{-5}$ below 40 K
 - Consistent with upper limit for single layer GaP
Cryogenic loss of tantala / titania coatings

- Increased TiO$_2$ doping reduces the cryogenic loss, particularly with heat-treatment
 - Insight into loss mechanisms, parallel structural measurements (R. Bassiri talk)

- New studies of:
 - pure TiO$_2$
 - Interest for nano-layer coatings (Shiuh Chao, Innocenzo Pinto)
 - $Y_{\text{TiO}_2} = 141$ GPa (Shiuh Chao, IBS TiO$_2$)
 - 75% TiO$_2$ / 25% Ta$_2$O$_5$
 - Further improvement in loss?
 - 0.5 μm thick films, ~60 μm thick Si cantilever substrates

![Graph showing mechanical loss vs. temperature with data points for different dopings.](image-url)
TiO₂/Ta₂O₅ coating loss results

- Cryogenic loss of as-deposited TiO₂ and 75% TiO₂ / 25% after various heat treatments

![Graph showing coating loss results](attachment:image.png)

- 100% TiO₂ AD
- 75% TiO₂ 25% Ta₂O₅ AD
- 75% TiO₂ 25% Ta₂O₅ 400
- 75% TiO₂ 25% Ta₂O₅ 600
75% TiO$_2$/Ta$_2$O$_5$ coating

- 75% TiO$_2$ (600C) coating has anomalously low loss
- Crystallized pure Ta$_2$O$_5$ displayed large 90 K loss peak
- 75% coating - crystallized more fully?
- Absorption / scatter measurements of interest

![Graph showing mechanical loss vs temperature for different coatings and temperatures. The graph highlights the best amorphous oxide result, AlGaP loss < 40 K, and G. Cole AlGaAs free-standing loss.]}
Titania doping can suppress cryogenic loss peak in tantala

- 75% TiO$_2$/Ta$_2$O$_5$
 - 400C heat treatment reduces cryogenic loss
 - crystallises at 600C, anomalously low cryogenic loss
Alternative amorphous coatings

- 30% silica-doped hafnia (CSIRO, 500 nm, Si cantilevers)
 - Silica prevents crystallisation, heat-treatment up to 400°C reduces loss
 - Best amorphous oxide coating so far, (almost) no low temperature loss peak

![Graph showing the coating loss vs temperature with different heat treatments.](image)

K. Craig et al, in preparation
Alternative amorphous materials

- Silica-doped hafnia (400°C) close to meeting ET-LF (10K) loss requirements

- As Innocenzo suggested, SiO₂-doped TiO₂ may be of interest (good room temperature loss, prevent crystallization)
Summary

- **Crystalline coatings**
 - AlGaAs on SiO$_2$ - loss 3.6×10^{-5} @ 290 K
 - AlGaAs on Si – partially detached during cryogenic cycling
 – work required to produce stronger bond
 - Prototype GaP/AlGaP MBE coating on Si is $<4 \times 10^{-5}$ below 40 K

- **Amorphous coatings**
 - Anomalously low loss for crystallized 75%TiO$_2$/Ta$_2$O$_5$ (600C)
 - SiO$_2$-doped HfO$_2$ (400C) best amorphous oxide so far, no low T peak
 - SiO$_2$ doping in TiO$_2$ of interest
AlGaAs on SiO$_2$

- Coating thermoelastic loss (Fejer et al, 2004)
 - Maximum TE loss is shown in the plot
 - Calculate fraction of energy γ associated with volume change for each mode

$$\phi_{\text{coating}} = \phi_{\text{intrinsic}} + \gamma \phi_{\text{coating TE}}$$

- $\phi_{\text{coating TE}}$ using AlGaAs properties from Cole 2013
- Coating TE loss likely has significant contribution to coating loss
- Further FE modelling required